Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3
نویسندگان
چکیده
Many challenges exist for the efficient and safe operation of wind turbines due to the difficulty in creating accurate models of their dynamic characteristics and the turbulent conditions in which they operate. A promising new area of wind turbine research is the application of adaptive control techniques, which are well suited to problems where the plant model is not well known and the plant operating conditions are unpredictable. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed and reject step disturbances, which model the uniform wind disturbance across the wind turbine rotor. The control objective is accomplished by collectively pitching the turbine blades. To improve controller performance, we use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to regulate turbine rotational speed and to accommodate step disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine that has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved generator speed regulation in Region 3 when compared with the baseline PI pitch controller. The adaptive controller demonstrated robustness to modeling errors and changes in system parameters.
منابع مشابه
Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes
Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and ...
متن کاملDifferent Types of Pitch Angle Control Strategies Used in Wind Turbine System Applications
The most common controller in wind turbine is the blade pitch angle control in order to get the desired power. Controlling the pitch angle in wind turbines has a direct impact on the dynamic performance of the machine and fluctuations in the power systems. Due to constant changes in wind speed, the wind turbines are of nonlinear and multivariate system. The design of a controller that can ad...
متن کاملPower and Velocity Control of Wind Turbines by Adaptive Fuzzy Controller during Full Load Operation
Research on wind turbine technologies have focused primarily on power cost reduction. Generally, this aim has been achieved by increasing power output while maintaining the structural load at a reasonable level. However, disturbances, such as wind speed, affect the performance of wind turbines, and as a result, the use of various types of controller becomes crucial.This paper deals with two ada...
متن کاملWind Turbine Contingency Control Through Generator De- rating
Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine,...
متن کاملAdaptive Disturbance Tracking Control for Large Horizontal Axis Wind Turbines with Disturbance Estimator in Region II Operation
A new control problem called Disturbance Tracking Control (DTC), which arises in active control of variable speed horizontal axis wind turbines for electric power generation, was developed previously. Feedback control of a linear plant, which is persistently disturbed, must cause the plant output to track a linear function of the disturbance. This control theory is related to Tip Speed Ratio Tr...
متن کامل